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Let Tn denote the n-dimensional torus. There are two definitions of Hs(Tn): the first
is by using Fourier series, and the second is by covering with coordinate patches. The first
definition is often easier to work with in practice, but it is nice to know that they are
equivalent. Here we present an elementary proof of this fact. We will denote by || · ||Hs(Tn)

the “Fourier series” norm. It will suffice to prove the following proposition, which effectively
shows that in a given chart, the Hs norms are equivalent; the full result follows by showing
that both Hs norms (at least up to an equivalence of norms) may be computed by using a
partition of unity and working in coordinate patches.

In practice, one pretends that a subset of Euclidean space is a subset of the torus, and
so can work with Hs(Tn) insteadof Hs(Rn). The foregoing statement is sufficient to show
that these approaches are equivalent, and the proposition in fact proves this statement.

Proposition 1.1. Let K be a compact subset of Rn, and suppose that Q = [a, b]n is a cube
such that K is contained in some open set contained in Q. Identify Q ∼= Tn. Suppose
u ∈ Hs(Rn) has support in K. Under Q ∼= Tn, we may identify u as a distribution in
D′(Tn). Then u ∈ Hs(Tn) and there exists C > 0 (depending on K) such that

1/C||u||Hs(Tn) ≤ ||u||H2(Rn) ≤ C||u||Hs(Tn).

Proof. We only need prove the statement for s ≥ 0 since duality gives s < 0. If s is an
integer, then the claim is obvious, since u ∈ Hs(Rn) iff for |α| ≤ s,

∂αu ∈ L2(Rn),

iff
∂αu ∈ L2(Tn)

iff u ∈ Hs(Tn), and we have the obvious equivalence of suitable norms at each step. Since
Hs is precisely the space of those u such that ∂αu ∈ Hs−bsc for |α| = bsc, we reduce to the
case 0 < s < 1.

For this, we may assume that Q = [−π, π]n, and K is contained inside an open set
contained in Q. First, suppose L ⊆ Q is small enough so that L− L,L+ L ⊆ Q (here +,−
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are the operations in Rn). We show that if u is supported in L, then ||u||Hs(Rn) ∼ ||u||Hs(Tn).
First, notice that whenever the second integral below makes sense,∫
Rn

∫
Rn

|u(x+ y)− u(y)|2

|x|n+2s
dydx =

∫
L

∫
L

|u(x+ y)− u(y)|2

|x|n+2s
dydx =

∫
Tn

∫
Tn

|u(x+ y)− u(y)|2

|x|n+2s
dydx,

where the + in the first integrand is + in Rn, the last + is + in Tn, and the middle + is
either (notice that we may actually identify u with a measurable function on Rn since it is
at least in L2(Rn)). Now,∫

Rn

∫
Rn

|u(x+ y)− u(y)|2

|x|n+2s
dydx =

∫
Rn

1

|x|n+2s
||u(x+ ·)− u(·)||2L2(Rn) dx

=

∫
Rn

1

|x|n+2s

∣∣∣∣∣∣ ˆu(x+ ·)− û(·)
∣∣∣∣∣∣2
L2(Rn)

dx

=

∫
Rn

∫
Rn

|eixξ − 1|2

|x|n+2s
|û(ξ)|2 dξdx

=

(∫
Rn

|eix−1|2

|x|n+2s
dx

)(∫
Rn

|û(ξ)|2||ξ|sdξ
)

The first integral is finite since the numerator is like |x|2 near 0, and 2− 2s > 0. We deduce
that

||u||L2(Rn) +

∫
Rn

∫
Rn

|u(x+ y)− u(y)|2

|x|n+2s
dydx ∼ ||u||Hs(Rn).

The same argument shows that

||u||L2(Tn) +

∫
Tn

∫
Tn

|u(x+ y)− u(y)|2

|x|n+2s
dydx ∼ ||u||Hs(Tn).

In particular the middle expression makes sense if u ∈ Hs(Rn) or u ∈ Hs(Tn). Since the
expressions on the left-hand side are equal, we have the desired result for L.

Now translating, we have the result whenever L is sufficiently small. Cover K by (finitely
many) small enough open sets Ui such that each Ui is contained inside Q, and Ui is small
enough so that Hs norms over it are equivalent whether taken in Rn or Tn, and so that the
Ui cover a slightly large compact set K ′ which is contained in an open set contained in Q.
Let V1 be the complement of K ′ in Rn, and V2 be the complement of K ′ in Tn. Let χi, ϕ1

be a partition of unity of Rn subordinate to the cover by Ui and V1, with suppχi ⊆ Ui,
suppϕ1 ⊆ V1, and let ϕ2 be supported in V2 so that

∑
χi + ϕ2 = 1 (this is indeed possible;

just set ϕ2 = ϕ1 everywhere in Q).

||u||Hs(Rn) ≤
∑
i

||χiu||Hs(Rn) + ||ϕ1u||Hs(Rn) =: ||u||1.

Notice that Hs(Rn) is complete under || · ||1. Since the identity map Hs(Rn) → Hs(Rn)
is continuous with the topology of || · ||1 on the domain and || · ||Hs(Rn) on the codomain,
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the identity in the reverse direction is continuous by the open mapping theorem, and so
|| · ||Hs(Rn) ∼ || · ||1. The same result holds for analogous norms on Tn. But if u is supported
in K, the ϕ1u = 0. Also, ||χiu||Hs(Rn) ∼ ||χiu||Hs(Tn). Since ψ2u = 0, we conclude that

||u||Hs(Rn) ∼
∑
||χiu||Hs(Tn) ∼ ||u||Hs(Tn),

which completes the proof.

One should note that a similar theorem holds to define Hs(M), wheneverM is a compact
manifold (without boundary). Fix a Riemannian metric g onM , and consider the associated
(positive) Laplace operator ∆ = ∆g. Suppose λ1, λ2, . . . are the eigenvalues of ∆ with
eigenfunctions e1, e2, . . . ∈ C∞(M). Then one may also define Hs(M) to be the completion
of the space of smooth functions u for which∑

〈λ〉2s|〈u, ei〉|2 <∞,

or equivalently for s ≥ 0 the space of all L2 functions satisfying the same. This proof is
harder, and depends on the fact that the operator (1 + ∆)s, defined in the obvious way by
acting on eigenfunctions, is an elliptic pseudodifferential operator of the correct order. One
recover the Theorem from this by noticing that the eigenfunctions of the flat Laplacian on
Tn consist precisely of functions eikx with eigenvalues |k|2.
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